REDOX ASPECTS REGARDING PRESERVATION OF VEGETAL FOOD PRODUCTS BY FREEZING

CRISTINEL V. ZĂNOAGĂ^{1*}, MĂDĂLINA ZĂNOAGĂ², MARIUS NECULAU¹

Key words: food products, freezing, vegetal products, redox characteristics

Abstract: Freezing, at least of the vegetable products, no matter of the anatomic part involved – root, stalk, leaf, flower, fruit or seed – induces a biochemical changes manifested, implicitly, by modification of the tissular rH. More precisely, the more distant the native rH of the product under consideration is from a certain value – apparently the optimum/compatible to the animal, consuming organism – (rH ~ 26), the deeper are the transformations it suffers as a result of freezing, namely: if the native rH takes values below 26, the product gets oxidized by freezing while, in the opposite case, it is reduced, as if the whole group of vegetal products would tend to attain – by means of freezing – a (redox) homeostasis.

INTRODUCTION

Freezing is a widely used method for preserving animal or vegetable products. In the case of vegetables, which are characterized by doubling of the cell membrane with a rigid cell wall, freezing may lead to breaking of the latter and, consequently, to biochemical changes. A possible working assumption would consider, too, this kind of changes which could appear not only in animal tissues but also in derivated products, such as cheese (a case in which tertiary- and especially quaternary-type structural changes may be invoked, at least in the case of proteins). A somehow exhaustive study, i.e. applied not only to currently frozen products but also to other types, is now being initiated with this first work.

MATERIALS AND METHODS

Various vegetal products, of all anatomic origins – root, stalk, leaf, flower, fruit, seed – have been frozen and then defrozen, with a 24 hours interval of time, as a pause between them, for assuring the necesarry time for evidencing the biochemical progress provoked by the change induced in the cellular and macromolecular structure by freezing. An aliquote product mass has been preserved in refrigerate state as control. Both samples have been then frozen for preservation up to the moment of characterization (the more so that the selected characterization method itself includes as a mandatory stage a freezing-defreezing cycle aimed at distrupting the supramolecular/infracellular and cellular structures, and at releasing the constituent substances). For biochemical characterization, a global parameter, namely the redox character, has been choosen, (if considering, too, that the biological processes those occurring inside the consumer's body included, are strongly influenced by this parameter [1]). The method applied, of the electrometric type, has been described in detail elsewhere [2]. The data obtained are shown in Table 1.

RESULTS AND DISCUSSION

One may observe that, in many cases, freezing induces a rH change, although no generally valid direction can be established. However, by plotting graphically the difference between the native rH (rH) and the rH (rH_p) acquired, after the freezing-defreezing stage, namely Δ rH, as a function of the native rH (Figure 1) – on may observe that the farther is the native rH from a certain value, the higher is the change in the product's biochemistry following the preservation stage (Figure 1 does not include all data presented in Table 1, but only part of them, randomly selected).

Table 1				
Organ	Species	rH	rH _p	$\Delta rH = rH - rH_p$
Root	Radish	14.835	19.58	-4.745
	Carrot	25.975	27.25	-1.275
	Parsnip	25.23	26.96	-1.730
	Parsley	30.24	29.69	0.550

-		
	Ľab	le

1

CRISTINEL V. ZĂNOAGĂ et all - REDOX ASPECTS REGARDING PRESERVATION OF VEGETAL FOOD PRODUCTS BY FREEZING

Organ	Species	rH	rHp	$\Delta rH = rH - rH_{p}$
	Red beet	29.90	29.69	0.210
Stalk	Potato	26.05	27.38	-1.330
	Kohlrabi	20.31	23.44	-3.130
	Cabbage	20.31	23.14	-2.830
	Helianthus tuberosus	22.11	29.82	-7.710
Leaf	Lovage	26.62	25.58	1.040
	Dandelion	32.03	26.59	5.440
	Nettle	22.31	28.25	-5.940
	Atriplex hortensis	30.225	23.84	6.385
	Rumex patientia	24.25	24.13	0.120
	Lettuce	22.62	24.525	-1.905
	Cabbage	21.94	23.87	-1.930
	Onion (bulb)	29.02	25.66	3.360
	beet	18.60	27.34	-8.740
	Allium porum	29.94	30.14	-0.200
	Leek	25.54	21.48	4.060
	Spinach	28.19	29.78	-1.590
	Celery	29.05	29.05	0.000
Flower	Acacia	29.18	26.47	2.710
1100001	Rose	26.45	28.65	-2.200
	Cauliflower	22.85	25.50	-2.650
Fruit	Strawberry	24.36	24.64	-0.280
	Cerasus avium	22.24	25.43	-3.190
	Raspberry	24.85	25.57	-0.720
	Cerasus vulgaris	22.27	27.00	-4.730
	Gooseberry	27.73	26.29	1.440
	Prunus cerasifera	23.52	27.02	-3.500
	Beans (pod)	27.605	24.48	3.125
	Tomato	22.29	20.49	1.800
	Pirus comunis	31.51	21.14	10.370
	Prunus domestica	34.42	32.29	2.130
	Persica vulgaris	32.47	31.60	0.870
	European grape vine	32.21	28.66	3.550
	Pepper	25.96	23.795	2.165
	American grape vine	29.24	32.00	-2.760
	Wild rose	23.39	23.715	-0.325
	Cucumber	22.02	30.215	-8.195
	Vegetable marrow	32.43	21.09	11.340
	Apple tree	24.245	27.255	-3.010
Seed	Pea (green)	19.15	19.87	-0.720
	Horse bean (green)	25.84	24.54	1.300
	Beans (green)	30.79	26.45	4.340
	Walnut tree	26.32	27.29	-0.970

Organ	Species	rH	rH _p	$\Delta rH = rH - rH_p$
	Peanut	12.18	25.01	-18.830

In other words, for a reductive deviation of the rH, freezing induces oxidation, and respectively, reduction, for its oxidative deviation, as if on the whole, the vegetal products would manifest a liking towards (global) homeostasis. This is represented by emphasizing of a straight line (the dotted one) whose crossing the abscisa would be the rH value (rH \sim 26) of global homeostasis. It is especially interesting that the animal tissue, particularly the human tissue, is globally characterized by this rH value.

Anyway, it is obvious that with the exception of the vegetal products characterized by rH values closest to 26, for all the others, preservation by freezing is inappropriate. Consequently, two different attitudes are therefore possible:

1. Selection, in view of preservation, of the vegetal products, by rH determination, and, consequently, freezing exclusively of products with rH values close to 26

2. Utilization of the frozen product as soon as possible, even its cooking in frozen state, for avoiding its defreezing.

However, as previously shown [1], a certain dependence of the gustative characteristics on the rH of the product is manifesting so that a certain taste depreciation of the product preserved by freezing cannot be ignored, even if its nutritional properties remain unchanged.

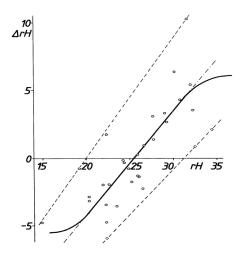


Fig. 1. The straight line resulting from the interpretation of the experimental data is only apparent, as the values recorded on the abscisa cannot exceed limits 0 and respectively, 42.4, beyond which the notion of rH looses its physical meaning. Therefore, one may be entitled to admit/support the tendency – manifested by the dependence for the extreme rH values (the continuous line) – of the distribution level.

CONCLUSIONS

Freezing induces a biochemical changes, quantificable by tissular rH. Thus, the more distant the native rH of the product under considerations is from a certain value (rH \sim 26) the deeper are the transformations it suffers: if the native rH takes values below 26, the product get oxidizing by freezing while in the opposite case it is reduced, as if the product would tend to obtain the same statement with other like-products.

REFERENCES

 Duca G., Zănoagă C. V., Duca Maria, Gladchi Viorica, 2001, *Procese redox în mediul ambiant*, Ed. Universității de Stat din Moldova, Chișinău.
Zănoagă C. V., Neacşu I., Zănoagă Mădălina, *St. cerc. biochim.*, 31, 1, 1988, p. 53-58

¹Academy of Romania – Center for oenological researches of Jassy ²Institute of Macromolecular Chemistry "P. Poni" Jassy *cvzanoaga@yahoo.com