G & BM Tome IV Iasi 2003

KARYOTYPE AND ID IOGRAM IN CHELIDONIUM MAJUS L

ANGELA PAVEL*, MARIA BUTNARU*

Key words: Chelidonium majus, kary otype, idiogram.

Abstract: Cytogenetical studies have been concentrated on the kary otype and idiogram making up. All analysed metaphasis cells have revealed 2n=12 chromosomes, being according to the literature data. *Chelidonium majus* kary otype is maked up of five median chromosome pairs and a submedian chromosome pair, being simmetric and primitive. The first chromosome pair is considered a identify marker of this species. The *C.m.ajus* idiogram has included two chromosome clusters which depend of centrom ere placing and can be synthetized as following: two median chromosome pairs and four chromosome pairs belong to submedian type (one pair of them contains secondary constrictions with satellites).

INTRODUCTION

By other medicinal plants, *Chelidonium majus* species belongs to essential ply totherapeutic plants (1). Probably, it is the motivation for which the most investigations have followed in time, clearing up the pharmaceutical, physiological, and biochemical aspects (alkaloids separation, active substances extraction from drugs), and less the aspects connected to populational, ecological, cy togenetical studies or the cy totaxonomy of this species.

Our researches had followed the establishing of the chrom osomesty pology, the *C.majus* kary oty pe and idiogram making up, with a view to estimation of evolutive steadiness degree of this plants.

MATERIALS AND METHODS

Vegetable material had been constituted from *C.majus* seeds derived from experimental micropopulation belonging to Botanical Garden - Iași.

Cy togenetical analysis of the root tips had carried out by *Feulgen* method of chromosomes staining in mitosis.

Vegetable material staining had accomplished to Carr Reactive (modified carbol-fuchsine) (7).

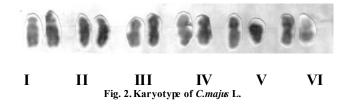
Microscopic preparations had carried out by squash method (2, 4, 7). Photographs had performed at immersion objective, with "Zenit" camera, on *Azo-Mureş* black-

white film and Kodak color type.

Kary otype had carried out correspondig to the methodology described of Dordea and al. (2).

RESULTS AND DISCUSSIONS

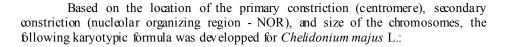
The diploid chromosome number in all the root tips has been 12, and basic chromosomial number has been 6.


The karyotype study, maked up rely on a single metaphases measurements (Fig. 1), has presented chromosomes with a enough different morphology as against to other genus species.

Chromosomes size varied between 7.30 and $6.43 \mu m$ in Ist chromosome pair and between 6.43 and $5.05 \mu m$ in the VIth pair. Centromeric index varied from 97.74% in the Vth chromosome pair to 54.66% in the IInd chromosome pair. Chromosomes relative length has mantained between following limits: 18.00% in Ist chromosome pair, and 15.07% in the VIth chromosome pair. Mean length of the

haploid chromosome complement has been 38.32 µm.

Fig.1. Metaphasic chromosomes in C. majus L.

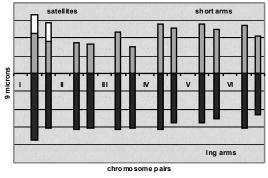
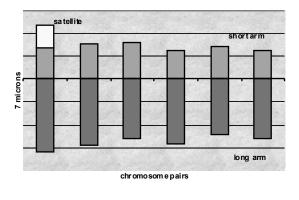


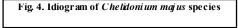
Arms difference ranged from 1.41 μ m in the IInd chromosome pair, and 0.06 μ m in the Vth chromosome pair.

Measurements of the chromosome complement are presented in Table 1.

Arms ratio has been comprised between 1.83 in the IInd chromosome pair and 1.02 in the V^{th} chromosome pair.

The secondary constriction was present on the first pair of chromosomes, about 1.27 µm from the primary constriction and was quite conspicuous in both the homologues of the cell.


Fig. 3. Karyogramof C.majus L.

K(n=6) = 5 m + 1 sm; where m and sm signify median and submetacentric chromosomes (Fig. 2).

Due to the low variability of the chromosomes type and to its amount in the chromosomial complement, the karyotype can be defined as being symmetrical and primitive (Fig. 2 and 3).

Based on quantitative analisys of the mitotic chromosomes belonging to 10 metaphases, the idiogram study in *Chelidonium majus* L. species has revealed different results against to a single mataphasic cell karyotype in this species.

In spite of all studied metaphases the chromosomial complement number was 12, the analized parameters have registered different values of the karyiotypes. The chromosome pairs have been arranged in decreasing order of the total length (Table 2, Fig. 4). Thus, mean length of the I^{st} pair was 4.94 μ m, with limits of the variability between 5.33 and 4.55 μm . Total mean length of the VIth chromosome pair was 4.01µm, with limits of the variability from 4.15 to 3.88µm.

Chromo some pair	Total length (µ)	Limits of Variability	Long arm (µ)	Limits of Variability	Short ar m (µ)	Limits of Variability	Ratio of arms	Centromere index (%)	Relative length (%)	Ar ms differ e nce	Chromosome type
Ι	6.86	7,30-6,43	3,40	3,76-3,05	2,04	2,25-1,83	1,67	60,00	18,00	1,36	m
II	6,78	6,90-6,66	3,11	3,17-3,06	1,70	1,74-1,65	1,83	54,66	17,70	1,41	sm
Ш	6,66	6,90-6,43	3,11	3,17-3,05	1,88	2,30-1,47	1,65	60,45	17,38	1,23	m
IV	6,48	6,90-6,07	2,98	3,17-2,79	1,13	2,75-2,52	1,13	88,25	17,01	0,35	m
V	5,80	6,07-5,51	2,66	2,79-2,53	2,60	2,75-2,43	1,02	97,74	15,13	0,06	m
VI	5,74	6,43-5,05	2,68	3,05-2,32	2,63	2,71-2,06	1,12	88,80	15,07	0,30	m

Table 1. So matic chromosome measurements in Chelido ni um maj us L.

Table 2. Morphometric characteristics of the nitotic chromosomes from 10 metaphase cells

Chromo	Total	Limits of	Long	Limits of	Short	Limits of	Arms	Centromere	Relative	Arms	Chromo
some	length	Variability	arm	Variability	arm	Variability	ratio	index (%)	length	difference	some Type
pair	(μ)		(μ)		(μ)				(%)		
I	4,94	5,33-4,55	3,20	3,35-3,06	1,34	1,51-1,17	2,38	41,87	18,31	1,86	sm
П	4,77	5,10-4,44	2,89	3,12-2,67	1,51	1,61-1,42	1,91	52,24	17,68	1,38	sm
III	4,56	4,83-4,30	2,63	2,76-2,50	1,57	1,66-1,48	1,67	59,69	17,00	1,06	m
IV	4,39	4,71-4,07	2,82	3,04-2,60	1,22	1,31-1,13	2,31	43,26	16,27	1,60	sm
V	4,31	5,02-3,60	2,41	2,85-1,98	1,44	1,61-1,27	1,67	59,75	16,07	0,97	m
VI	4,01	4,15-3,88	2,60	2,65-2,55	1,26	1,31-1,21	2,06	48,46	14,86	1,34	sm

Centromere index varied between 59.75% in the Vth pair and 41.87% in the Ist pair. Relative length has been comprised between 18.31% in the Ist pair and 14.86% in the VIth chromosome pair, being the smallest chromosome pair of the complement. In this case, haploid complement length was 26.98 μ m, being smaller than the same parameter calculated to a single metaphasis of the karyotype.

Arms difference has maintained between 1.86 value in the first pair and 0.97 in the V^{th} chromosome pair.

Arms ratio has presented the highest values in the first chromosome pair being 2.38, and the lowest values in the III^{tl} and V^{th} pairs, with 1.67 value each one.

Secondary constrictions have prezented on the first chromosome pair, attached to the short arms and measurising $1.05\mu m$ on the average.

Chromosome types have been defined on the basis of the ratio of arms, which has established the primary constrictions pozition (centromere position).

The differences between the karyotype and idiogram characteristics do not are essential. They reffer to chromosome size, the two chromosome types frequency (median or submedian), and to the parameter values as arms ratio and centromere index, which proceed one from others.

The satellited chromosome presence in the first chromosome pair to all metaphases cells analysed, presuade us to find out that this trait is hard and characterize this species.

Differences in relation to the two types of chromosomes is probably due of the processing metaphase time, as well as of differentiated condensation of the nucleoproteic structure of the chromosomes.

CONCLUSIONS

Cytogenetical studies offered remarkably clear and important details as regards chromosome typology and karyotype evolution.

All analysed metaphasis cells have revealed 2n=12 chromosomes, being according to the literature data.

Chelidonium majus karyotype is maked up of five median chromosome pairs and a submedian chromosome pair, being simmetric and primitive.

The satellite presence in C.majus species signify a novelty comparatively to other studies in the same species (1). The first chromosome pair is considered a identify marker of this species.

The C.majus idiogram (Fig.4) has included two chromosome clusters which depend of centromere placyng and can be synthetized as following:

- > Two median chromosome pairs (pairs III and V);
- Four chromosome pairs belong to submedian type (I, II, IV, and VI), one pair of them contains secondary constrictions with satellites (pair I);

First chromosome pair which also presents the largest length of the complement, can be considered a marker in cytogenetical characterization of the *C.majus* species.

BIBLIOGRAPHY

Băra, I., Ghiorghiță, G.I., 1975, *The study of mitotic chromosomes in Chelidonium majus L.,* In: travaux de à Station "Sejarul" Ecologie Terrestre et Genetique, 195-196.

Dordea, Manuela, Crăciunaș, Comelia, Coman, N., Andraș, C., 2000, Genetică generală și moleculară - abordare practică, Ed. Presa Univ. Clujeană, 2, 8.

Gavrilă L., Lungeanu Agripina, Rogoz I., 1989, Ciogenetică moleculară și evoluționistă, Ed. Științifică și Enciclopedică, Bucuești, 231-265.

Jahier J., Chevre A.M., Eber F., Delourme R., Tanguy A.M. (Eds.), 1992, Techniques de cytogenetique vegetale, INRA, Springer-Verlag, Paris, 7-32, 149-171.

Pavel, Angela, Băra, I., 1991, Cytogenetics and Biochemistry of the species Chelidonium majus L. in vivo and invitro I. Preliminary aspects, In: AnSt.ale Univ."Al.I.Cuza", Tom XL, sII a, Biol.veg., 105-110.

Popescu P., Hayes H., Dutrillaux (Eds.), 1998, Techniques in animal cytogenetics, Springer-Verlag Berlin Heidelberg New York, 18-20.

Raicu, P., Anghel, I., Popescu, Constanța, Duma, Doina, Nicolaescu, Măriuca, Taisescu, Elena, 1983, *Genetica - Metode de laborator*, Ed. Acad, R.S.R., Bucureşti, 49-51.

* "Gr.T.Popa" University of Medicine and Pharmacy, Faculty of Medical Bioengineering, 16, Universității Bvd., 6600 - Iași, Romania