G\& BM

Tome IV

THE MITOTIQUE CHROMOSOMES OF HELIANTHUS ANNUUS L

ION I. BĂRA, CSILLA IULIANA BĂRA, CAMELIA PRECOP

Key words: Helianthus annuus, metaphases, chrom osomes, satellites, karyoty pe.
Abstract: It was identified metaphases with 34,32 and 17 chromosomes. The chromosomes of two pairs have satellites. The chrom osomes belong to m, sm and stty pes.

INTRODUCTION

The establishing of kary otype traits have a big importarce for a species characterization. This ty pe of studies are very necessary, interesting and of great value because the chromosomal formula is useful to establish the taxonom ic position of every species and to trace the best way for its selection and melioration. On the other hand is possible to use the kary otype to trace the ways of speciation inside a genus or family. For Helianthus genus, the origin of its species is enough controversial. Some hy pothesis startfrom the prem ise that the species inside the genus have different origins and for this is possible to explain the discontinuity of surface occupied by a species and the great amplitude of species variability. Inside the genus, Helianthus annuus L. species is characterized by the biggest variability amplitude, both inside the cultivated forms and inside the spontaneous ones.

THE AIMOF INVESTIGATIONS
We aimed to characterize Helianthus annuus L species from cy togenetically point of view as a first step to establish a correct systematic position. This species has a big economic importance and, for this, is necessary to be very carefully investigated, to establish the chromosomal formub, ploidy level and the kary oty pe evolution..

MATERIAL AND METHODS

The seeds were gain in Botanical Garden of University "Al.I. Cuza"-Iaşi, in 1999. 1999.
The germination was assured in laboratory, in Petri dishes, on filter paper moistened with distilled water, in dackness, at $25^{\circ} \mathrm{C}$. When the roots had $0.5-1 \mathrm{~cm}$, the germinated seeds were placed for 2 hours on filter paper moistened with 0.2% colchicines solution and, after that, for other 2 hours back on paper filtersm oistened with distilled water.

The fixation was assured with 95% ethanol/acetic acid $3 / 1$ solution, for 24 hours. Hy droly se was made with $50 \% \mathrm{HCl}$, for $10-12$ minutes, at room temperature. The coloration was assured with Carr solution. The metaphases were examined by MC5A microscope.

RE ZULTS AND DISCUSSIONS

In tables 1-3 we can see that the selected metaph ases contain chromosomes with small length variability. As result the haploid sets lengths have registered values very similar. More variability is for the numbers ofchromosomes and their types.

We consider as very interesting the fict that some metaphases contain aneuploid number of chromosomes ($2 \mathrm{n}=32$). Many of them lack the $16^{\text {th }}$ pair (see table 3) of chromosomes. But the biggest suprise, for us, was the fact that we have found a metaphase with 17 chromosomes (a number corresponding to \mathbf{n}, not to $\mathbf{2 n}$).

Relative to average length of chromosomes, in analyzed metaphases, we can pointed out that it is comprised between $2.85 \mu \mathrm{~m}$ (the last pair) asnd $4.82 \mu \mathrm{~m}$ (first pair). The difference of $1.95 \mu \mathrm{~m}$, between first and last pairs of homologous is distributed very unequal on the 17 pairs of chromosomes, being of $0 \mu \mathrm{~m}$ for IV, V and VI pairs and of $0.65 \mu \mathrm{~m}$ br I and II pairs.

Not the same may we say about differences between chromosomes arms. The biggest difference between long arm and short arm ($2.39 \mu \mathrm{~m}$) was registered at chromosomes of $10^{\text {th }}$ pair, the smallest one $(0.21 \mu \mathrm{~m})$ being registered at chromosomes of $8^{\text {th }}$ pair

The total length of an haploid complement is between $61.04 \mu \mathrm{~m}$ and $63.21 \mu \mathrm{~m}$.
As types, established on the basis of ams ratio, centromere index and differences between arms, the chromosomes belong to \mathbf{m} (pairs II, III, VI. VIII, XI, XII, XIII), sm (pairs I, IV, V, XV, XVII) and st (pairs IX, X, XIV, XVI). So we may consider that the karyotype is enough asymmetrical (an evolved karyotype). More, at two of chromosomes pairs (III and XV) it was constated the presence of satellites of $0.4 \mu \mathrm{~m}$. This situation increases the karyotype asymmetry.

CONCLUSIONS

The diploid number of chromosomes, in Helianthus annuus L. individuals investigated by us was $34(2 n=34)$. But, with an enough high frequency, we have identified metaphases with aneuploid number ($2 \mathrm{n}=32$) and, very interesting, metaphase with 17 dromosomes.

The chromosomes were small (between $2.82 \mu \mathrm{~m}$, the shortest and $4.82 \mu \mathrm{~m}$, the longest).

The karyotype is asymmetrical and two pairs of chromosomes have satellites.

$\begin{gathered} \text { The pair } \\ \text { of } \\ \text { chromoso } \\ \text { mes } \\ \hline \end{gathered}$	$\begin{gathered} \text { The } \\ \text { chromoso } \\ \text { me type } \end{gathered}$	Long arm (L) $\mu \mathrm{m}$	Short arm (s) $\mu \mathrm{m}$	$\begin{aligned} & \hline \text { The arms } \\ & \text { sum } \\ & (\mathrm{L}+\mathrm{s}) \mu \mathrm{m} \end{aligned}$	The arms difference (L-s) $\mu \mathrm{m}$	The total length (T.I) $\mu \mathrm{m}$	Relative length (R.I)	Arms ratio (r)	Centrome re index (I)	Satelites length
I	sm	3.04	1.74	4.78	1.3	4.82	76.25	1.74	36.40	
II	m	2.39	1.74	4.13	0.65	4.17	65.97	1.34	42.13	
III	m	2.17	1.95	4.12	0.22	4.16	65.81	1.11	47.33	0.04
IV	sm	2.61	1.3	3.91	1.31	3.95	62.49	2.01	33.24	
V	sm	2.61	1.3	3.91	1.31	3.95	62.49	2.01	33.24	
VI	m	2.17	1.74	3.91	0.43	3.95	62.49	1.25	44.50	
VII	m	2.06	1.84	3.90	0.22	3.94	62.33	1.12	47.17	
VIII	m	1.95	1.74	3.69	0.21	3.73	59.01	1.12	47.15	
IX	st	2.82	0.87	3.69	1.95	3.73	59.01	3.24	23.57	
X	st	3.04	0.65	3.69	2.39	3.73	59.01	4.67	17.61	
X	m	2.17	1.3	3.47	0.87	3.51	55.53	1.67	37.46	
XII	m	1.84	1.63	3.47	0.21	3.51	55.53	1.12	46.97	
XIII	m	2.17	1.3	3.47	0.87	3.51	55.53	1.67	37.46	
XIV	st	2.61	0.65	3.26	1.96	3.30	52.20	4.02	19.93	
XV	sm	2.39	0.87	3.26	1.52	3.30	52.20	2.47	26.68	0.04
XVI	st	2.39	0.65	3.04	1.74	3.08	48.72	3.67	21.38	
XVII	sm	1.96	0.87	2.83	1.09	2.87	45.40	2.24	30.74	

Table 1. The traits of mitotic chromosomes of Helianh us annuus $\mathbf{L}(\mathbf{2} \mathbf{n}=\mathbf{3 4})$

$\begin{gathered} \text { The pair } \\ \text { of } \\ \text { chromoso } \\ \text { mes } \\ \hline \end{gathered}$	$\begin{gathered} \text { The } \\ \text { chromoso } \\ \text { me type } \end{gathered}$	Long arm (L) $\mu \mathrm{m}$	Short arm (s) $\mu \mathrm{m}$	$\begin{aligned} & \hline \text { The arms } \\ & \text { sum } \\ & (\mathrm{L}+\mathrm{s}) \mu \mathrm{m} \end{aligned}$	The arms dfference (L-s) $\mu \mathrm{m}$	The total length (T.I) $\mu \mathrm{m}$	Relative length (R.l)	Arms ratio (r)	Centrome re index (I)	$\begin{aligned} & \hline \text { Sateites } \\ & \text { length } \end{aligned}$
I	sm	2.61	1.3	3.91	1.31	3.95	64.71	2.01	33.25	
II	m	2.17	1.74	3.91	0.43	3.95	64.71	1.24	44.50	
III	m	2.17	1.74	3.91	0.43	3.95	64.71	1.24	44.50	0.04
IV	sm	2.61	1.3	3.91	1.31	3.95	64.71	2.01	33.25	
V	sm	2.61	1.3	3.91	1.31	3.95	64.71	2.01	33.25	
VI	m	1.95	1.74	3.69	0.21	3.73	61.10	1.12	47.15	
VII	m	1.95	1.74	3.69	0.21	3.73	61.10	1.12	47.15	
VIII	m	1.74	1.52	3.26	0.22	3.30	54.06	1.14	46.62	
IX	st	2.61	0.86	3.47	1.75	3.51	57.50	3.03	24.78	
X	st	3.04	0.65	3.69	2.39	3.73	61.10	4.67	17.61	
X	m	2.17	1.3	3.47	0.87	3.51	57.50	1.67	37.46	
XII	m	1.95	1.52	3.47	0.43	3.51	57.50	1.28	43.80	
XIII	m	2.17	1.3	3.47	0.87	3.51	57.50	1.67	37.46	
XIV	st	2.61	0.65	3.26	1.96	3.30	54.06	4.01	19.94	
XV	sm	2.60	0.87	3.47	1.73	3.51	57.50	2.89	25.07	0.04
XVI	st	2.39	0.65	3.04	1.74	3.08	50.45	3.67	21.38	
XVII	sm	1.96	0.87	2.83	1.09	2.87	47.01	2.25	30.74	

Table 2. The traits of mitotic chromosomes of Helianthus annuus $\mathbf{L}(2 \mathrm{n}=17$?)

The pair of chrom osomes	The chrom osome type	$\begin{gathered} \hline \text { Long } \\ \text { arm } \\ \text { (L) } \mu \mathrm{m} \end{gathered}$	Short arm (s) $\mu \mathrm{m}$	The arms sum $(\mathrm{L}+\mathrm{s}) \mu \mathrm{m}$	The arms differenc e (L-s) $\mu \mathrm{m}$	The total length (T.l) $\mu \mathrm{m}$	Relative length (R.l)	Arms ratio (r)	Centromer e index (I)	Satelites length
I	m-sm	2.96	1.74	4.70	1.22	4.74	76.89	1.70	37.02	
II	m	1.95	1.52	3.47	0.43	3.51	56.94	128	43.80	
II	m	1.95	1.52	3.47	0.43	3.51	56.94	128	43.80	0.04
IV	sm	2.71	1.30	4.01	1.41	4.05	65.70	2.08	32.42	
V	sm	2.61	1.30	3.91	1.31	3.95	64.08	2.01	33.25	
VI	m	2.17	1.74	3.91	0.43	3.95	64.08	124	44.50	
VII	m	2.06	1.84	3.90	0.22	3.94	63.92	1.12	47.18	
VIII	m	1.95	1.74	3.69	0.21	3.73	60.51	1.12	47.15	
IX	st	2.93	0.86	3.79	2.07	3.83	62.13	3.40	22.69	
X	st	3.04	0.65	3.69	2.39	3.73	60.51	4.67	17.61	
XI	m	2.61	1.74	4.35	0.87	4.39	71.22	150	40.00	
XII	m	2.17	1.95	4.42	0.22	4.16	67.48	1.11	47.33	
XIII	m	2.50	1.74	4.24	0.76	4.28	69.43	1.43	41.04	
XIV	st	2.61	0.86	3.47	1.75	3.51	56.94	3.03	24.78	
XV	sm	2.60	0.87	3.47	1.73	3.51	56.94	289	25.07	0.04
XVI	Pereche de cromosomi lipsă									
XVII	sm	1.95	0.86	2.81	1.09	2.85	46.23	2.26	30.60	

Table 3. The traits of mitotic chromosomes of Helianthus annuus L.(2n=32)

